Compositionality

Peter Pagin Dag Westerståhl
Stockholm University University of Gothenburg

October 19, 2008, 20:12

1. Background

Compositionality is the property that the meaning of any complex expression is determined by the meanings of its parts and the way they are put together. The language can be natural or formal, but it has to be interpreted. That is, meanings, or more generally, semantic values of some sort, must be assigned to linguistic expressions, and compositionality concerns the distribution of these values.

Even though similar ideas were expressed both in antiquity and in the middle ages (e.g. by Abelard and Buridan), Gottlob Frege is generally taken to be the first person to state explicitly the modern notion of compositionality and to claim that it is an essential feature of human language.

Let us assume for the time being that the sentence has a reference. If we now replace one word of the sentence by another having the same reference, this can have no bearing upon the reference of the sentence (Frege 1892, p. 62).

This is (a special case of) the substitution version of the idea of semantic values being determined; if you replace parts by others with the same value, the value of the whole doesn't change. Note that the values here are Bedeutungen (referents), such as truth values (for sentences) and individual objects (for individual-denoting terms).

Both the substitution version and the function version (see below) were explicitly stated by Rudolf Carnap (1956), for both extension and intension, and collectively labeled ‘Frege's Principle’. The term ‘compositional’, used in a similar sense, to characterize meaning and understanding, derives from Fodor and Katz 1964.
Today, compositionality is a key notion in linguistics, philosophy of language, logic, and computer science, but there are divergent views about its exact formulation, methodological status, and empirical significance. To begin to clarify some of these views we need a framework for talking about compositionality that is sufficiently general to be independent of particular theories of syntax or semantics and yet allows us to capture the core idea.

2. Grammars and semantics

The function version and the substitution version of compositionality are two sides of the same coin: that the meaning (value) of a compound expression is a function of certain other things (other meanings (values) and a ‘mode of composition’). To formulate these versions, two things are needed: a set of structured expressions and a semantics for them.

Structure is readily taken as algebraic structure, so that the set E of linguistic expressions is a domain over which certain syntactic operations or rules are defined, and moreover E is generated by these operations from a subset A of atoms (e.g. words). In the literature there are essentially two ways of fleshing out this idea. One, which originates with Montague (cf. 1974), takes as primitive the fact that linguistic expressions are grouped into categories or sorts, so that a syntactic rule comes with a specification of the sorts of each argument as well as of the value. This use of many-sorted algebra as an abstract linguistic framework is described in Janssen 1986 and Hendriks 2001. The other approach, first made precise in Hodges 2001, is one-sorted but uses partial algebras instead, so that rather than requiring the arguments of an operation to be of certain sorts, the operation is simply undefined for unwanted arguments. The partial approach is in a sense simpler and more general than the many-sorted one, and we follow it here.\footnote{A many-sorted algebra can in a straightforward way be turned into a one-sorted partial one (but not always vice versa), and under a natural condition the sorts can be recovered in the partial algebra. See Westerståhl 2004 for further details and discussion. Some theorists combine partiality with primitive sorts; for example, Keenan and Stabler 2004 and Kracht 2007.}

Thus, let a grammar

$$E = (E, A, \Sigma)$$

\[1\]
be a partial algebra, where E and A are as above and Σ is a set of partial functions over E of finite arity which generate all expressions in E from A. To illustrate, the familiar rules

\[
\text{NP} \rightarrow \text{Det N} \quad \text{(NP-rule)} \\
\text{S} \rightarrow \text{NP VP} \quad \text{(S-rule)}
\]

correspond to binary partial functions, say $\alpha, \beta \in \Sigma$, such that, if most, dog, and bark are atoms in A, one derives as usual the sentence Most dogs bark in E, by first applying α to most and dog, and then applying β to the result of that and bark. These functions are necessarily partial; for example, β is undefined whenever its second argument is dog.

It may happen that one and the same expression can be generated in more than one way, i.e. the grammar may allow structural ambiguity. So it is not really the expressions in E but rather their derivation histories, or analysis trees, that should be assigned semantic values. These derivation histories can be represented as terms in a (partial) term algebra corresponding to E, and a valuation function is then defined from terms to surface expressions (usually finite strings of symbols). However, to save space we shall ignore this complication here, and formulate our definitions as if semantic values were assigned directly to expressions. More precisely, the simplifying assumption is that each expression is generated in a unique way from the atoms by the rules. One consequence is that the notion of a subexpression is well-defined: the subexpressions of t are t itself and all expressions used in the generation of t from atoms.\(^2\)

The second thing needed to talk about compositionality is a semantics for E. We take this simply to be a function μ from a subset of E to some set M of semantic values (‘meanings’).\(^3\)

\(^2\)It is fairly straightforward to lift the uniqueless assumption, and reformulate the definitions given here so that they apply to terms in the term algebra instead; see e.g. Westerståhl 2004 for details.

\(^3\)In the term algebra case, μ takes grammatical terms as arguments. Alternatively, one may take disambiguated expressions (somehow annotated to resolve syntactic ambiguities), such as phrase structure markings by means of labeled brackets. Yet another option is to have an extra syntactic level, like Logical Form, as the semantic function domain. The choice between such alternatives is largely irrelevant from the point of view of compositionality.
The semantic function μ is also allowed to be partial. For example, it may represent our partial understanding of some language, or our attempts at a semantics for a fragment of a language. Further, even a complete semantics will be partial if one wants to maintain a distinction between meaningfulness (being in the domain of μ) and grammaticality (being derivable by the grammar rules).

No assumption is made about meanings. What matters for the abstract notion of compositionality is not meanings as such, but synonymy, i.e. the partial equivalence relation on E defined by:

$$u \equiv_\mu t \text{ iff } \mu(u), \mu(t) \text{ are both defined and } \mu(u) = \mu(t).$$

(We use s, t, u, with or without subscripts, for arbitrary members of E.)

3. Variants and properties of compositionality

3.1. Basic compositionality

Both the function version and the substitution version of compositionality can now be easily formulated, given a grammar E and a semantics μ as above.

Funct(μ) For every rule $\alpha \in \Sigma$ there is a meaning operation r_α such that if $\alpha(u_1, \ldots, u_n)$ is meaningful, $\mu(\alpha(u_1, \ldots, u_n)) = r_\alpha(\mu(u_1), \ldots, \mu(u_n))$.

Note that Funct(μ) presupposes the Domain Principle (DP): subexpressions of meaningful expressions are also meaningful. The substitution version of compositionality is given by

Subst(\equiv_μ) If $s[u_1, \ldots, u_n]$ and $s[t_1, \ldots, t_n]$ are both meaningful expressions, and if $u_i \equiv_\mu t_i$ for $1 \leq i \leq n$, then $s[u_1, \ldots, u_n] \equiv_\mu s[t_1, \ldots, t_n]$.

The notation $s[u_1, \ldots, u_n]$ indicates that s contains (not necessarily immediate) disjoint occurrences of subexpressions among u_1, \ldots, u_n, and $s[t_1, \ldots, t_n]$ results from replacing each u_i by t_i.\footnote{Restricted to immediate subexpressions Subst(\equiv_μ) says that \equiv_μ is a partial congruence relation. If $\alpha(u_1, \ldots, u_n)$ and $\alpha(t_1, \ldots, t_n)$ are both meaningful and $u_i \equiv_\mu t_i$ for $1 \leq i \leq n$, then} Subst(\equiv_μ) does not presuppose DP, and one can
easily think of semantics for which DP fails. However, a first observation is:

1. Under DP, $\text{Funct}(\mu)$ and $\text{Subst}(\equiv \mu)$ are equivalent.\(^5\)

The requirements of basic compositionality are in some respects not so strong, as can be seen from the following observations:

2. If μ gives the same meaning to every expression, then $\text{Funct}(\mu)$ holds.
3. If μ gives different meanings to all expressions, then $\text{Funct}(\mu)$ holds.

(2) is of course trivial. For (3), consider $\text{Subst}(\equiv \mu)$ and observe that if no two expressions have the same meaning, then $u_i \equiv \mu t_i$ entails $u_i = t_i$, so $\text{Subst}(\equiv \mu)$, and therefore $\text{Funct}(\mu)$, holds trivially.

3.2. Recursive semantics

The function version of compositional semantics is given by recursion over syntax, but that does not imply that the meaning operations are defined by recursion over meaning, in which case we have recursive semantics. Standard semantic theories are typically both recursive and compositional, but the two notions are mutually independent. In the recursive case we have:

$\text{Rec}(\mu)$ There is a function b and for every $\alpha \in \Sigma$ an operation r_α such that for every meaningful expression s,

$$
\mu(s) = \begin{cases}
 b(s) & \text{if } s \text{ is atomic} \\
 r_\alpha(\mu(u_1), \ldots, \mu(u_n), u_1, \ldots, u_n) & \text{if } s = \alpha(u_1, \ldots, u_n)
\end{cases}
$$

For μ to be recursive, the basic function b and the meaning composition operation r_α must themselves be recursive, but this is not required in the function version of $\mu(\alpha(u_1, \ldots, u_n)) \equiv \mu(\alpha(t_1, \ldots, t_n))$.

Under DP, this is equivalent to the unrestricted version.

\(^5\)That Rule(μ) implies $\text{Subst}(\equiv \mu)$ is obvious when $\text{Subst}(\equiv \mu)$ is restricted to immediate subexpressions, and otherwise proved by induction over the generation complexity of expressions. In the other direction, the operations r_α must be found. For $m_1, \ldots, m_n \in M$, let $r_\alpha(m_1, \ldots, m_n) = \mu(\alpha(u_1, \ldots, u_n))$ if there are expressions u_i such that $\mu(u_i) = m_i$, $1 \leq i \leq n$, and $\mu(\alpha(u_1, \ldots, u_n))$ is defined. Otherwise, $r_\alpha(m_1, \ldots, m_n)$ can be undefined (or arbitrary). This is enough, as long as we can be certain that the definition is independent of the choice of the u_i, but that is precisely what $\text{Subst}(\equiv \mu)$ says.
compositionality. In the other direction, the presence of the expressions u_1, \ldots, u_n themselves as arguments to r_α has the effect that the compositional substitution laws need not hold.

If we drop the recursiveness requirement on b and r_α, $\text{Rec}(\mu)$ becomes vacuous, because $r_\alpha(m_1, \ldots, m_n, u_1, \ldots, u_n)$ can simply be defined to be $\mu(\alpha(u_1, \ldots, u_n))$ whenever $m_i = \mu(u_i)$ for all i and $\alpha(u_1, \ldots, u_n)$ is meaningful (and undefined otherwise). Since inter-substitution of synonymous but distinct expressions changes at least one argument of r_α, no counterexample is possible.

3.3. **Weaker versions**

Basic (first-level) compositionality takes the meaning of a complex expression to be determined by the meanings of the immediate subexpressions and the top-level syntactic operation. We get a weaker version—second-level compositionality—if we require only that the operations of the two highest levels, together with the meanings of expressions at the second level, determine the meaning of the whole complex expression.\(^6\) Third-level compositionality is defined analogously, and is weaker still. In the extreme case we have bottom-level, or weak functional compositionality, if the meaning of the complex term is determined only by the meanings of its atomic constituents and the entire syntactic construction (i.e. the derived operation that is extracted from a complex expression by knocking out the atomic constituents). A function version of this becomes somewhat cumbersome (but see Hodges 2001, sect. 5),\(^7\) whereas the substitution version becomes simply:

\[\text{AtSubst}(\equiv \mu) \]

Just like $\text{Subst}(\equiv \mu)$ except that the u_i and t_i are all atomic.

\(^6\)A possible example comes from constructions with quantified noun phrases where the meanings of both the determiner and the restricting noun – i.e. two levels below the head of the construction in question – are needed for semantic composition, a situation that may occur with possessives and some reciprocals. In Peters and Westerståhl 2006, ch. 7 and in Westerståhl 2008 it is argued that, in general, the corresponding semantics is second-level but not first-level compositional.

\(^7\)Terminology concerning compositionality is somewhat fluctuating. David Dowty (2007) calls (an approximate version of) weak functional compositionality *Frege’s Principle*, and refers to $\text{Funct}(\mu)$ as *homomorphism compositionality*, or *strictly local compositionality*, or *context-free semantics*. In Larson and Segal 1995, this is called *strong compositionality*. The labels *second-level compositionality*, *third-level*, etc. are not standard in the literature but seem appropriate.
Although weak compositionality is not completely trivial (a language could lack the property), it does not serve the language users very well: the meaning operation \(r_{\alpha} \) that corresponds to a complex syntactic operation \(\alpha \) cannot be predicted from its build-up out of simpler syntactic operations and their corresponding meaning operations. Hence, there will be infinitely many complex syntactic operations whose semantic significance must be learned one by one.

3.4. Stronger versions

We get stronger versions of compositionality by enlarging the domain of the semantic function, or by placing additional restrictions on meaningfulness or on meaning composition operations. An example of the first is Zoltan Szabo’s idea (2000) that the same meaning operations define semantic functions in all possible human languages, not just for all sentences in each language taken by itself. That is, whenever two languages have the same syntactic operation, they also associate the same meaning operation with it.

An example of the second option is what Wilfrid Hodges has called the \textit{Husserl property} (going back to ideas in Husserl 1900):

\begin{quote}
(Huss) Synonymous expressions belong to the same (semantic) category.
\end{quote}

Here the notion of category is defined in terms of substitution; say that \(u \sim_{\mu} t \) if, for every \(s \in E \), \(s[u] \in \text{dom}(\mu) \) iff \(s[t] \in \text{dom}(\mu) \). So (Huss) says that synonymous terms can be inter-substituted without loss of meaningfulness. This is often a reasonable requirement (though Hodges (2001) mentions some putative counterexamples). (Huss) also has the consequence that \(\text{Subst}(\equiv_{\mu}) \) can be simplified to \(\text{Subst}_1(\equiv_{\mu}) \), which only deals with replacing one subexpression by another. Then one can replace \(n \) subexpressions by applying \(\text{Subst}_1(\equiv_{\mu}) \) \(n \) times; (Huss) guarantees that all the ‘intermediate’ expressions are meaningful.

An example of the third kind is that of requiring the meaning composition operations to be computable. To make this more precise we need to impose more order on the meaning domain, viewing meanings too as given by an algebra \(\mathbf{M} = (M, B, \Omega) \), where \(B \subseteq M \) is a finite set of \textit{basic meanings}, \(\Omega \) is a finite set of elementary operations from \(n \)-tuples of meanings to meanings, and \(M \) is generated
from B by means of the operations in Ω. This allows the definition of meaning operations by recursion over M. The semantic function μ is then defined simultaneously by recursion over syntax and by recursion over the meaning domain. Assuming that the elementary meaning operations are computable in a sense relevant to cognition, the semantic function itself is computable.

A further step in this direction is to require that the meaning operations are easy to compute, thereby reducing or minimizing the complexity of semantic interpretation. Minimal complexity is guaranteed when meaning operations are either elementary or else formed from elementary operations by function composition. This rules out non-compositional recursive semantics.\(^8\)

Another strengthening, also introduced in Hodges 2001, concerns Frege’s so-called Context Principle. A famous but cryptic saying in Frege 1884 is: “Never ask for the meaning of a word in isolation, but only in the context of a sentence” (p. x). This principle has been much discussed in the literature\(^9\), and sometimes taken to conflict with compositionality. However, if not seen as saying that words somehow lose their meaning in isolation, it can be taken as a constraint on meanings, in the form of what we might call the Contribution Principle:

\[(\text{CP}) \quad \text{The meaning of an expression is the contribution it makes to the meanings of complex expressions of which it is a part.}\]

This is vague, but Hodges notes that it can be made precise with an additional requirement on the synonymy \equiv_μ. Assume (Huss), and consider:

\[\text{InvSubst}_3(\equiv_\mu) \quad \text{If } u \neq_\mu t, \text{ there is an expression } s \text{ such that either exactly one of } s[u] \text{ and } s[t] \text{ is meaningful, or both are and } s[u] \neq_\mu s[t].\]

So if two expressions of the same category are such that no complex expression of which the first is a part changes meaning when the first is replaced by the second, they are synonymous. That is, if they make the same contribution to all such complex expressions, their meanings cannot be distinguished. This can be taken

\(^8\)Cf. Pugin 2009 for work in this direction.
as one half of (CP), and compositionality in the form of \(\text{Subst}_1(\equiv_{\mu}) \) as the other.\(^{10}\)

We can take a step further in this direction by requiring that replacement of expressions by expressions with \textit{different} meanings \textit{always} changes meaning:

\[\text{InvSubst}_{\forall}(\equiv_{\mu}) \quad \text{If for some } i, 0 \leq i \leq n, u_i \not\equiv_{\mu} t_i, \text{ then for every expression } s, \text{ either exactly one of } s[u_1, \ldots, u_n] \text{ and } s[t_1, \ldots, t_n] \text{ are meaningful,} \]

or both are and \(s[u_1, \ldots, u_n] \not\equiv_{\mu} s[t_1, \ldots, t_n] \).

This disallows synonymy between complex expressions transformable into each other by substitution of constituents at least some of which are non-synonymous, but it does allow synonymous expressions with different structure. Carnap's principle of synonymy as \textit{intensional isomorphism} forbids this, too. With the concept of \textit{intension} from possible-worlds semantics it can be stated as

\[(\text{RC}) \quad t \equiv_{\mu} u \text{ iff} \]

i) \(t, u \) are atomic and co-intensional, or

ii) for some \(\alpha \), \(t = \alpha(t_1, \ldots, t_n) \), \(u = \alpha(u_1, \ldots, u_n) \), and \(t_i \equiv_{\mu} u_i, 1 \leq i \leq n \)

(RC) entails both \(\text{Subst}(\equiv_{\mu}) \) and \(\text{InvSubst}_{\forall}(\equiv_{\mu}) \), but is very restrictive. It disallows synonymy between \textit{brother} and \textit{male sibling} as well as between \textit{John loves Susan} and \textit{Susan is loved by John}, and allows different expressions to be synonymous only if they differ at most in being transformed from each other by substitution of synonymous atomic expressions.

We get a weaker requirement as follows. First, define \(\mu \)-\textit{congruence}, \(\approx_{\mu} \), in the following way:

\[(\approx_{\mu}) \quad t \approx_{\mu} u \text{ iff} \]

\(^{10}\)Hodges' main application of these notions is to what has become known as the \textit{extension problem}: given a partial compositional semantics \(\mu \), under what circumstances can \(\mu \) be extended to a larger fragment of the language? Here (CP) can be used as a requirement, so that the meaning of a new word \(w \), say, must respect the (old) meanings of complex expressions of which \(w \) is a part. This is especially suited to situations when all new items are parts of expressions that already have meanings (cofinality). Hodges defines a corresponding notion of \textit{fregian extension of} \(\mu \), and shows that in the situation just mentioned, and given that \(\mu \) satisfies (Huss), a \textit{unique} fregian extension always exists. Another version of the extension problem is solved in Westerståhl 2004. An abstract account of compositional extension issues is given in Fernando 2005.
(i) t or u is atomic, $t \equiv_{\mu} u$, and neither is a constituent of the other, or
(ii) $t = \alpha(t_1, \ldots, t_n)$, $u = \beta(u_1, \ldots, u_n)$, $t_i \approx u_i$, $1 \leq i \leq n$, and for all s_1, \ldots, s_n, $\alpha(s_1, \ldots, s_n) \equiv_{\mu} \beta(s_1, \ldots, s_n)$, if either is defined.

Then require synonymous expressions to be congruent:

(Cong) If $t \equiv_{\mu} u$, then $t \equiv_{\mu} u$.

By (Cong), synonymous expressions cannot differ much syntactically, but they may differ in the two crucial respects forbidden by (RC). (Cong) does not hold for natural language if logically equivalent sentences are taken as synonymous, but that it holds otherwise remains an hypothesis.

It follows from (Cong) that meanings are (or can be represented as) structured entities: entities uniquely determined by how they are built, i.e. entities from which constituents can be extracted. We then have projection operations:

(Rev) For every meaning operation $r : E^n \rightarrow E$ there are projection operations $s_{r,i}$ such that $s_{r,i}(r(m_1, \ldots, m_n)) = m_i$.

Together with the fact that the operations r_i are meaning operations for a compositional semantic function μ, (Rev) has semantic consequences, the main one being a kind of inverse functional compositionality:

InvFunct(μ) The syntactic expression of a complex meaning m is determined, up to μ-congruence, by the composition of m and the syntactic expressions of its parts.

For the philosophical significance of inverse compositionality, see sections 4.6 and 5.2.\(^\text{11}\)

\(^{11}\)For (\equiv_{μ}), (Cong), InvFunct(μ), and a proof that (Rev) is a consequence of (Cong) (really of the equivalent statement that the meaning algebra is a free algebra), see Pagin 2003a. (Rev) seems to be what Jerry Fodor understands by ‘reverse compositionality’ in e.g. Fodor 2000, p. 371.
3.5. Direct and indirect compositionality

In Jacobson 2002, Pauline Jacobson distinguishes between direct and indirect compositionality, as well as between strong direct and weak direct compositionality. This concerns how the analysis tree of an expression maps onto the expression itself, an issue we have avoided here, for simplicity. Informally, in strong direct compositionality, a complex expression t is built up from sub-expressions (corresponding to subtrees of the analysis tree for t) simply by means of concatenation. In weak direct compositionality, one expression may wrap around another (as call up wraps around him in call him up). In indirect compositionality, there is no such simple correspondence between the composition of analysis trees and elementary operations on strings.

Even under our assumption that each expression has a unique analysis, our notion of compositionality here is indirect in the above sense: syntactic operations may delete strings, reorder strings, make substitutions and add new elements. Strictly speaking, the direct/indirect distinction is not a distinction between kinds of semantics, but between kinds of syntax. Still, discussion of it tends to focus on the role of compositionality in linguistics, e.g. whether to let the choice of syntactic theory be guided by compositionality.\(^{12}\)

3.6. Compositionality for interpreted languages

Some linguists, among them Jacobson, tend to think of grammar rules as applying to signs, where a sign is a triple $\langle e, k, m \rangle$ consisting of a string, a syntactic category, and a meaning. This is formalized by Marcus Kracht (see Kracht 2003, Kracht 2007), who defines an interpreted language to be a set L of signs in this sense, and a grammar G as a set of partial functions from signs to signs, such that L is generated by the functions in G from a subset of atomic (lexical) signs. Thus, a meaning assignment is built into the language, and grammar rules are taken to apply to meanings as well.

This looks like a potential strengthening of our notion of grammar, but is not really used that way, partly because the grammar is taken to operate indepen-

dently (though in parallel) at each of the three levels. Let \(p_1, p_2, \) and \(p_3 \) be the projection functions on triples yielding their first, second, and third elements, respectively. Kracht calls a grammar \textit{compositional} if for each \(n \)-ary grammar rule \(\alpha \) there are three operations \(r_{\alpha,1}, r_{\alpha,2}, \) and \(r_{\alpha,3} \) such that for all signs \(\sigma_1, \ldots, \sigma_n \) for which \(\alpha \) is defined,

\[
\alpha(\sigma_1, \ldots, \sigma_n) = \\
\langle r_{\alpha,1}(p_1(\sigma_1), \ldots, p_1(\sigma_n)), r_{\alpha,2}(p_2(\sigma_1), \ldots, p_2(\sigma_n)), r_{\alpha,3}(p_3(\sigma_1), \ldots, p_3(\sigma_n)) \rangle
\]

and moreover \(\alpha(\sigma_1, \ldots, \sigma_n) \) is defined if and only if each \(r_{\alpha,i} \) is defined for the corresponding projections. In a sense that can be made precise, however, this is not really a variant of compositionality but rather another way to organize grammars and semantics.

3.7. Context dependence

In standard possible-worlds semantics the role of meanings are served by intensions: functions from possible worlds to extensions. For instance, the intension of a sentence returns a truth value, when the argument is a world for which the function is defined. Montague (1974) extended this idea to include not just worlds but arbitrary indices \(i \) from some set \(I \), as ordered tuples of contextual factors relevant to semantic evaluation. Speaker, time, and place of utterance are typical elements in such indices. The semantic function \(\mu \) then assigns a meaning \(\mu(t) \) to an expression \(t \), which is itself is a function such that for an index \(i \in I, \mu(t)(i) \) gives an extension as value. Kaplan's \textit{two-level} version of this (Kaplan 1989) first assigns a function (character) to \(t \) taking certain parts of the index (the context, typically including the speaker) to a content, which is in turn a function from selected parts of the index to extensions.

In both versions, the usual concept of compositionality straightforwardly applies. The situation gets more complicated when semantic functions themselves take contextual arguments, e.g. if a meaning-in-context for an expression \(t \) in context \(c \) is given as \(\mu(t, c) \). The reason for such a change might be the view that the contextual meanings are contents in their own right, not just extensional fall-outs of the standing, context-independent meaning. But with context as an additional
argument we have a new source of variation. The most natural extension of compositionality to this format is given by

\[C\text{-Funct}(\mu) \quad \text{For every rule } \alpha \in \Sigma \text{ there is a meaning operation } r_\alpha \text{ such that for every context } c, \text{ if } \alpha(u_1, \ldots, u_n) \text{ has meaning in } c, \text{ then } \mu(\alpha(u_1, \ldots, u_n), c) = r_\alpha(\mu(u_1, c), \ldots, \mu(u_n, c)). \]

\[C\text{-Funct}(\mu) \] seems like a straightforward extension of compositionality to a contextual semantics, but it can fail in a way non-contextual semantics cannot, by a *context-shift failure*. For we can suppose that although \(\mu(u_i, c) = \mu(u_i, c') \), \(1 \leq i \leq n \), we still have \(\mu(\alpha(u_1, \ldots, u_n), c) \neq \alpha(u_1, \ldots, u_n), c') \). One might see this as a possible result of so-called *unarticulated constituents*. Maybe the meaning of the sentence

(4) It rains

is sensitive to the location of utterance, while none of the *constituents* of that sentence (say, *it* and *rains*) is sensitive to location. Then the contextual meaning of the sentence at a location \(l \) is different from the contextual meaning of the sentence at another location \(l' \), even though there is no such difference in contextual meaning for any of the parts. This may hold even if substitution of *expressions* is compositional.

There is therefore room for a weaker principle that cannot fail in this way, where the meaning operation *itself* takes a context argument:

\[C\text{-Funct}(\mu)_c \quad \text{For every rule } \alpha \in \Sigma \text{ there is a meaning operation } r_\alpha \text{ such that for every context } c, \text{ if } \alpha(u_1, \ldots, u_n) \text{ has meaning in } c, \text{ then } \mu(\alpha(u_1, \ldots, u_n), c) = r_\alpha(\mu(u_1, c), \ldots, \mu(u_n, c), c). \]

The only difference is the last argument of \(r_\alpha \). Because of this argument, \(C\text{-Funct}(\mu)_c \) is not sensitive to the counterexample above, and is more similar to non-contextual compositionality in this respect.

This kind of semantic framework is discussed in Pagin 2005; a general format,
and properties of the various notions of compositionality that arise, are presented in Westerståhl to appear. For example, it can be shown that (weak) compositionality for contextual meaning entails compositionality for the corresponding standing meaning, but the converse does not hold.

So far, we have dealt with extra-linguistic context, but one can also extend compositional semantics to dependence on linguistic context. The semantic value of some particular occurrence of an expression may then depend on whether it is an occurrence in, say, an extensional context, or an intensional context, or a hyperintensional context, a quotation context, or yet something else. The crucial ingredient in a framework for such a semantics is a function that takes as argument a context type and an operator and gives as value a new context type, for the evaluation of sub-expressions.

4. Arguments in favor of compositionality

4.1. Learnability

Perhaps the most common argument for compositionality is the argument from learnability: A natural language has infinitely many meaningful sentences. It is impossible for a human speaker to learn the meaning of each sentence one by one. Rather, it must be possible for a speaker to learn the entire language by learning the meaning of a finite number of expressions, and a finite number of construction forms. For this to be possible, the language must have a compositional semantics. The argument was to some extent anticipated already in Sanskrit philosophy of language, but in its modern form it is usually attributed to Donald Davidson (Davidson 1967, 17).

Properly spelled out, the problem is not that of learning the meaning of infinitely many meaningful sentences (given that one has command of a syntax), for if I learn that they all mean that snow is white, I have already accomplished the task. Rather, the problem is that there are infinitely many meanings that are each expressed by some expression in the language (with contextual parameters fixed), and hence infinitely many equivalence classes of synonymous expressions.

Still, as an argument for compositionality, the learnability argument has two
main weaknesses. First, the premise that there are infinitely many sentences that have a determinate meaning although they have never been used by any speaker, is a very strong premise, in need of justification. That is, at a given time t_0, it may be that the speaker or speakers employ a semantic function μ defined for infinitely many sentences, or it may be that they employ an alternative function μ_0 which agrees with μ on all sentences that have in fact been used but is simply undefined for all that have not been used. On the alternative hypothesis, when using a new sentence s, the speaker or the community gives some meaning to s, thereby extending μ_0 to μ_1, and so on. Phenomenologically, of course, the new sentence seemed to the speakers to come already equipped with meaning, but that was just an illusion. On this alternative hypothesis, there is no infinite semantics to be learned. To argue that there is a learnability problem, we must first justify the premise that we employ an infinite semantic function. This cannot be justified by induction, for we cannot infer from finding sentences meaningful that they were meaningful before we found them, and exactly that would have to be the induction base.

The second weakness is that even with the infinity premise in place, the conclusion of the argument would be that the semantics must be computable, but computability does not entail compositionality, as we have seen.

4.2. Novelty
Closely related to the learnability argument is the argument from novelty: speakers are able to understand sentences they have never heard before, which is possible only if the language is compositional.

When the argument is interpreted so that, as in the learnability argument, we need to explain how speakers reliably track the semantics, i.e. assign to new sentences the meaning that they independently have, then the argument from novelty shares the two main weaknesses with the learnability argument.

4.3. Productivity
According to the pure argument from productivity, we need an explanation of why we are able to produce infinitely many meaningful sentences, and composition-
ality offers the best explanation. Classically, productivity is appealed to by Noam Chomsky as an argument for generative grammar (Chomsky 1971, 74; Chomsky 1980, 76-78).

However, the pure productivity argument is very weak. On the premise that a human speaker can think indefinitely many propositions, all that is needed is to assign those propositions to sentences. The assignment does not have to be systematic in any way. Unless the assignment is to meet certain conditions, productivity requires nothing more than the combination of infinitely many propositions and infinitely many expressions.

4.4. Systematicity
A related argument by Fodor (1987, 147-50) is that of systematicity. It can be stated either as a property of speaker understanding or as an expressive property of a language. Fodor tends to favor the former (since he is ultimately concerned with the mental). In the simplest case, Fodor points out that if a speaker understands a sentence of the form \(tRu \), she will also understand the corresponding sentence \(uRt \), and argues that this is best explained by appeal to compositionality.

Formally, the argument is to be generalized to cover the understanding of any new sentence that is formed by recombination of constituents that occur and construction forms that are used in sentences already understood. Hence, in this form it reduces to one of three different arguments; either to the argument from novelty, or to the productivity argument, or finally, to the argument from intersubjectivity (below), and only spells out a bit the already familiar idea of old parts in new combinations.

It might be taken to add an element, for it not only aims at explaining the understanding of new sentences that is in fact manifested, but also predicts what new sentences will be understood. However, Fodor himself points out the problem with this aspect, for if there is a sentence \(s \) formed by a recombination that we do not find meaningful, we will not take it as a limitation of the systematicity of our understanding, but as revealing that the sentence \(s \) is not in fact meaningful, and hence that there is nothing to understand. Hence, we cannot come to any other conclusion than that the systematicity of our understanding is maximal.
The systematicity argument can alternatively be understood as concerning natural language itself, namely as the argument that sentences formed by grammatical recombination are meaningful. It is debatable to what extent this really holds, and sentences (or so-called sentences) like Chomsky's *Colorless green ideas sleep furiously* have been used to argue that not all grammatical sentences are meaningful.

But even if we were to find meaningful all sentences that we find grammatical, this does not in itself show that compositionality, or any kind of systematic semantics, is needed for explaining it. If it is only a matter of assigning some meaning or other, without any further condition, it would be enough that we can think new thoughts and have a disposition to assign them to new sentences.

4.5. Induction on synonymy

We can observe that our synonymy intuitions conform to Subst(≡_µ). In case after case, we find the result of substitution synonymous with the original expression, if the new part is taken as synonymous with the old. This forms the basis of an *inductive generalization* that such substitutions are always meaning preserving. In contrast to the argument from *novelty*, where the idea of tracking the semantics is central, this induction argument may concern our habits of assigning meaning to, or reading meaning into, new sentences: we tend to do it compositionally.

There is nothing wrong with this argument, as far as it goes, beyond what is in general problematic with induction. It should only be noted that the conclusion is weak. Typically, arguments for compositionality aim at the conclusion that there is a systematic pattern to the assignment of meaning to new sentences, and that the meaning of new sentences can be computed somehow. This is not the case in the *induction* argument, for the conclusion is compatible with the possibility that substitutivity is the *only* systematic feature of the semantics. That is, assignment to meaning of new sentences may be completely random, except for respecting substitutivity. If the substitutivity version of compositionality holds, then (under DP) so does the function version, but the semantic function need not be computable, and need not even be finitely specifiable.
4.6. Intersubjectivity and communication

The problems with the idea of tracking semantics when interpreting new sentences can be eliminated by bringing in intersubjective agreement in interpretation. For by our common sense standards of judging whether we understand sentences the same way, there is overwhelming evidence (e.g. from discussing broadcast news reports) that in a majority of cases, speakers of the same language interpret new sentences similarly. This convergence of interpretation, far above chance, does not presuppose that the sentences heard were meaningful before they were used. The phenomenon needs an explanation, and it is reasonable to suppose that the explanation involves the hypothesis that the meaning of the sentences are computable.

Then it is at bottom the success rate of linguistic communication with new sentences that gives us a reason for believing that sentences are systematically mapped on meanings. This was Frege's point of view (Frege 1923, p. 55). As Frege depicts it, a speaker first entertains a new thought, or proposition, finds a sentence for conveying that proposition to a hearer, and by means of that sentence the hearer comes to entertain that proposition. Frege appeals to semantic structure for explaining how this is possible.

Because of synonymy, a sentence that expresses a proposition in a particular language is typically not uniquely determined within that language by the proposition expressed. Still, we might want the speaker to be able to work out what expression to use, rather than searching for a suitable sentence by interpreting candidates one by one. The inverse functional compositionality principle, InvFunct(µ), of section 3.4, offers such a method (Cf. Pagin 2003a).

4.7. Compositionality and computability

Another important point is that virtually all arguments so far only justify the principle the meaning is computable or recursive, and the principle that up to certain syntactic variation, an expression of a proposition is computable from that proposition. Why should the semantics also be compositional, and possibly inversely compositional? One reason could be that compositional semantics, or at least certain simple forms of compositional semantics, is very simple, in the sense that a
minimal number of processing steps are needed by the hearer for arriving at a full interpretation (cf. Pagin 2009).

5. Arguments against compositionality

5.1. Vacuity and triviality arguments

Vacuity. Some claims that compositionality is empirically *vacuous* are based on mathematical arguments. For example, Zadrozny (1994) shows that for every semantics μ there is a compositional semantics ν such that $\nu(t)(t) = \mu(t)$ for every expression t, and uses this fact to draw a conclusion of that kind. But note that the mathematical fact is itself trivial: let $\nu(t) = \mu(t)$ for each t and the result is immediate from (2) in section 3.1 above.\(^{13}\)

Claims like these tend to have the form: for any semantics μ there is a compositional semantics ν from which μ can be easily recovered. But this too is completely trivial as it stands: if we let $\nu(t) = \langle \mu(t), t \rangle$, ν is 1-1, hence compositional by (3) in section 3.1, and μ is clearly recoverable from ν.

In general, it is not enough that the old semantics can be computed from the new compositional semantics: for the new semantics to have any interest it must agree with the old one in some suitable sense. As far as we know there are no mathematical results showing that such a compositional alternative can always be found (see Westerståhl 1998 for further discussion).

Triviality. Paul Horwich (e.g. 1998) has argued that compositionality is not a substantial property of a semantics, but is *trivially* true. He exemplifies with the sentence *dogs barks*, and says (Horwich 1998, 156-57) that the meaning property

(5) x means DOGS BARK

consists in the so-called construction property

(6) x results from putting expressions whose meanings are DOG and BARK, in that order, into a schema whose meaning is NS V.

\(^{13}\)Other parts of Zadrozny's results use non-wellfounded sets and are less trivial. For a result from manipulation of syntax, see Janssen 1986, 1997.
As far as it goes, the compositionality of the resulting semantics is a trivial consequence of Horwich's conception of meaning properties. Horwich's view here is equivalent to Carnap's conception of synonymy as intensional isomorphism. Neither allows that that an expression with different structure or composed from parts with different meanings could be synonymous with an expression that means DOGS BARK. However, for supporting the conclusion that compositionality is trivial, these synonymy conditions must themselves hold trivially, and that is not the case.

5.2. Superfluity arguments

Mental processing. Stephen Schiffer (1987, 192-200) has argued that compositional semantics, and public language semantics altogether, is superfluous in the account of linguistic communication. All that is needed is to account for how the hearer maps his mental representation of an uttered sentence on a mental representation of meaning, and that is a matter of a syntactic transformation, i.e. a translation, rather than interpretation.

The problem with the argument is that a mental translation function f by itself tells us nothing about communicative success. It only maps one mental representation on another. To account for communication, we need another recursive function g that maps the uttered sentence the first representation, and a third recursive function h that maps the second representation on the proposition represented. But then the composed function $h(f(g(\ldots)))$ is a recursive function that maps sentences on meanings.\(^{14}\)

Pragmatic composition. According to Francois Recanati (2004), word meanings are put together in a process of pragmatic composition. That is, the hearer takes word meanings, syntax and contextual features as the input, and forms the interpretation that best corresponds to them. As consequence, semantic compositionality is not needed for interpretation to take place.

A main motivation for Recanati’s view is the ubiquity of those pragmatic operations that Recanati calls modulations,\(^{15}\) and which intuitively contribute to “what is said”, i.e. to communicated content before any conversational implicatures. To

\(^{14}\)For an extended discussion, see Pagin 2003b.

\(^{15}\)These, under varying terms and conceptions, have been described e.g. by Dan Sperber and Deirdre Wilson (1992), Kent Bach (1994), Robyn Carston (2002) and by Recanati himself.
take an example from Recanati, in reply to an offer of something to eat, the speaker says

(7) I have had breakfast

thereby saying that she has had breakfast in the morning of the day of utterance, which involves a modulation of the more specific kind Recanati calls free enrichment, and implicating by means of what she says that she is not hungry. On Recanati’s view, communicated contents are always or virtually always pragmatically modulated. Moreover, modulations in general do not operate on a complete semantically derived proposition, but on conceptual constituents.\(^{16}\) Hence, it seems that what the semantics delivers does not feed into the pragmatics.

However, if meanings, i.e. the outputs of the semantic function, are structured entities, in the sense specified by (Rev) and InvFunct(\(\mu\)) of section 3.4, then the last objection is met, for then semantics is able to deliver the arguments to the pragmatic operations, e.g. properties associated with VP:s. Moreover, the modulations that are in fact made appear to be controlled by a given semantic structure: as in (7), the modulated part is of the same category and occupies the same slot in the overall structure as the semantically given argument that it replaces. This provides a reason for thinking that modulations operate on a given (syntactically induced) semantic structure, rather than on pragmatically composed material.\(^{17}\)

5.3. Unsuitability arguments

According to a view that has come to be called radical contextualism, truth evaluable content is radically underdetermined by semantics, i.e. by literal meaning. That is, no matter how much a sentence is elaborated, something needs to be added to its semantic content in order to get a proposition that can be evaluated as true or false. Since there will always be indefinitely many different ways of adding, the proposition expressed by means of the sentence will vary from context to context.

\(^{16}\) In (7) it is the property of having breakfast that is modulated into having breakfast this day, not the proposition as a whole or even the property of having had breakfast.

\(^{17}\) This line of reasoning is elaborated in Pagin and Pellegrine 2007. In more recent work, Recanati (2009) similarly sees semantic compositionality and pragmatics as compatible.
text.18

It is in the spirit of radical contextualism to minimize the contribution of semantics (literal meaning) for determining expressed content, and thereby the importance of compositionality. Strictly speaking, however, the truth or falsity of the compositionality principle for natural language is orthogonal to the truth or falsity of radical contextualism. For whether the meaning of a sentence s is a proposition or not is irrelevant to the question whether that meaning is determined by the meaning of the constituents of s and their mode of composition. The meaning of s may be unimportant but still compositionally determined.

It is a further question whether radical contextualism itself, in either version, is a plausible view. It appears that the examples of contextualism can be handled by other methods, e.g. by appeal to pragmatic modulations mentioned in section 5.2 (cf. Pagin and Pelletier 2007), which does allow propositions to be semantically expressed.

6. Problem cases
A number of natural language constructions present apparent problems for compositional semantics. In this concluding section we shall briefly discuss a few of them, and mention some others.

6.1. Quotation
Often quotation is set aside for special treatment as an exception to ordinary semantics, which is supposed to concern used occurrences of expressions rather than mentioned ones. Sometimes, this is regarded as cheating, and quotation is proposed as a clear counterexample to compositionality: brother and male sibling are synonymous, but ‘brother’ and ‘male sibling’ are not (i.e. the expressions that include the opening and closing quote). Since enclosing an expression in quotes is a syntactic operation, we have a counterexample.

However, if the semantics allows for linguistic context-dependence, as suggested in subsection 3.7, then quotation can be handled in an extended version

18Well-known proponents of radical contextualism include John Searle (e.g. 1978), Charles Travis (e.g. 1985), and Sperber and Wilson (1992).
of compositionality: the semantic value of an expression with respect to a quotation context is then the expression itself, if it is simple, or else a concatenation of the values of the parts.\footnote{A formal theory has been worked out by the authors, but for lack of space cannot be presented here.}

6.2. Belief sentences

Belief sentences offer difficulties for compositional semantics, both real and merely apparent. At first blush, the case for a counterexample against compositionality seems very strong. For in the pair

\[(8)\]

- a. John believes that Fred is a child doctor.
- b. John believes that Fred is a pediatrician.

(8a) may be true and (8b) false, despite the fact that *child doctor* and *pediatrician* are synonymous. If truth value is taken to depend only on meaning and on extra-semantic facts, and the extra-semantic facts as well as the meanings of the parts and the modes of composition are the same between the sentences, then the meaning of the sentences must nonetheless be different, and hence compositionality fails. This conclusion has been drawn by Jeff Pelletier (1994).

The reason for thinking that there might be such a difference in truth value is usually that there is some kind of discrepancy in the understanding of the attributee (John) between the synonyms.\footnote{Cf. Benson Mates (Mates 1950) and Tyler Burge Burge 1978. Mates took such cases as a reason to be skeptical about synonymy.} This is not a decisive reason, however, since it is what the words mean in the sentences, e.g. depending on what the *speaker* means, that is relevant, not what the *attributee* means by those words.

A problem still arises, however, if belief contents are more fine-grained than sentence meanings, and words in belief contexts are somehow tied to these finer differences in grain. For instance, as a number of authors have suggested, perhaps belief contents are propositions under modes of presentation.\footnote{See e.g. Burdick 1982, Salmon 1986. Salmon, however, existentially quantifies over modes of presentations, which preserves substitutivity.} It may then be that different but synonymous expressions are associated with different modes of presentation. In our example, John may believe a certain proposition under a
mode of presentation associated with *child doctor* but not under any mode of presentation associated with *pediatrician*, and that accounts for the change in truth value.

In such a case, there may indeed be failure of standard compositionality. But as with quotation, a semantics that allows for linguistic context dependence can admit contexts where other properties than basic meaning matter. The semantics can then still proceed by means of recursion over syntax, as in standard compositionality.22

6.3. Idioms

Idioms are almost universally thought to constitute a problem for compositionality. For example, the VP *kick the bucket* can also mean *DIE*, but the semantic operation corresponding to the standard syntax of, say, *fetch the bucket*, giving its meaning in terms of the meanings of its immediate constituents *fetch* and *the bucket*, cannot be applied to give the idiomatic meaning of *kick the bucket*.

This is no doubt a problem of some sort, but not necessarily for compositionality. To see what idioms have to do with compositionality, think of the following situation. Given a grammar and a compositional semantics for it, suppose we decide to give some already meaningful phrase a non-standard, idiomatic meaning. Can we extend the given syntax (in particular, to disambiguate) and semantics in a natural way that preserves compositionality? This requires an account of how the syntactic rules apply to the idiom, and to its parts if it has structure, as well as a corresponding semantic account.

Not all idioms behave the same. While the idiomatic *kick the bucket* is fine in *John kicked the bucket yesterday*, or *Everyone kicks the bucket at some point*, it is not good in

(9) The bucket was kicked by John yesterday.

In contrast, *pull strings* preserves its idiomatic meaning in passive form.

(10) Strings were pulled to secure Henry his position.

22Formal details have been worked out, but again for space reasons cannot be presented here.
In principle, nothings prevents a semantics that deals differently with the two kinds of idioms from being compositional in our sense, although one needs e.g. to prevent *kick the pail* from meaning DIE even if *bucket* and *pail* are synonymous, and likewise to prevent the idiomatic versions of *pull* and *string* to combine illegitimately with other phrases. For an overview of the semantics of idioms, see Nunberg, Sag, and Wasow 1994. Westerståhl 2002 is an abstract discussion of various ways to incorporate idioms while preserving compositionality.

6.4. Ambiguity

One might argue that even though there are clear cases of structural ambiguity in language, as in *Old men and women were released first from the occupied building*, in other cases the additional structure is just an *ad hoc* way to avoid ambiguity. In particular, *scope* ambiguities could be taken to be of this kind. For example, while semanticists since Montague have had no trouble inventing different underlying structures to account for the two readings of

(11) Every critic reviewed four films.

it may be argued that this sentence in fact has just one structural analysis, a simple constituent structure tree, and that meaning should be assigned to that one structure. A consequence is that meaning assignment is no longer functional, but relational, and hence compositionality either fails or is just not applicable. Pelleter (1999) draws precisely this conclusion.

An alternative is to give up the idea that the meaning of (11) is a proposition, i.e. something with a truth value (in the actual world), and opt instead for *under-specified meanings* of some kind. Such meanings can be uniquely, and perhaps compositionally, assigned to simple structures like constituent structure trees, and one can suppose that some further process of interpretation of particular utterances leads to one of the possible specifications, depending on context. This is a form of context-dependence, and we saw in section 3.7 how similar phenomena can be dealt with compositionally. In the present case, where more than meanings are available, one might try to use the *set* of those meanings instead. A similar but more sophisticated way of dealing with quantifier scope is so-called Cooper stor-
age (see Cooper 1983). However, while such strategies restore a functional meaning assignment, the compositionality of the resulting semantics is by no means automatic.

Another option is to accept that meaning assignment becomes relational and attempt instead to reformulate compositionality for such semantics. Although this line has hardly been tried in the literature, it is an option worth exploring.\(^{23}\)

6.5. Other problems

Other problems than those above, some with proposed solutions, include possessives (cf. Partee 1997; Peters and Westerståhl 2006), the context sensitive use of adjectives (cf. Lahav 1989; Szabó 2001; Reimer 2002), noun-noun compounds (cf. Weiskopf 2007), unless-quantifiers (cf. Higginbotham 1986; Pelletier 1994), any embeddings (cf. Hintikka 1984), and indicative conditionals (e.g. Lewis 1976).

All in all, it seems that the issue of compositionality in natural language will remain live, important and controversial for a long time to come.

References

\(^{23}\) For some first attempts in this direction, see Westerståhl 2007.

